RACQUET RESEARCH

Using physics to help select a racquet

Formula: Tip Speed

Tip Speed is the velocity of the racquet tip just before impact. From the Work formula, we can find \(v_1\), the linear velocity of the racquet’s mass center (balance point) just before impact. It will be the square root of [(2 ÷ M) × Work], because we know that the kinetic energy of the racquet on impact, i.e. the Work, = ½ Mv1². Then multiply \(v_1\) by the ratio of: the distance (which we will call \(e\)) from the axis of rotation to the tip, to the distance (\(r\)) from the axis to the mass center, or balance point. The distance \(e\) is found by subtracting the distance from the butt to the axis of rotation from the racquet’s length, in centimeters. The formula is:

\[ Tip\ Speed = \sqrt{\frac{2}{M} \times Work \times \frac{e}{r}^2} \]

Legend of Variables
\(A_x\)=Impulse Reaction, the translational force acting at the axis of rotation due to impact, in Newtons. Note that when \(d\) = \(q\) (\(q\) is the distance from the axis of rotation to the center of percussion), the expression within the second set of parentheses becomes zero.
\(a\)=linear acceleration of the mass center, in m/s²
\(b\)=mass of the ball, in kg
\(c\)=coefficient of restitution of the racquet/ball system
\(d\)=distance from the axis of rotation to the impact point, in cm
\(e\)=the distance from the axis of rotation to the tip
\(F\)=force applied at mass center, in Newtons
\(I\)=moment of inertia (swing weight) of racquet, in kgf/cm²
\(I_5\)=moment of inertia (swing weight) of racquet at 5cm from the butt, in kgf/cm²
\(I_7\)=moment of inertia (swing weight) of racquet at 7cm from the butt, in kgf/cm²
\(I_{10}\)=moment of inertia (swing weight) of racquet at 10cm from the butt, in kgf/cm²
\(I_a\)=moment of inertia (swing weight) of racquet at distance \(a\) from the butt, in kgf/cm²
\(M\)=mass of the racquet, in kg
\(m\)=mass in kg
\(ω\)=angular velocity of racquet, in radians/s
\(p\)=linear velocity of impact point, in m/s
\(r\)=distance in cm from mass center (balance point) to axis used in the stroke
\(s\)=ball velocity, in m/s (positive is away from player)
\(s_1\)=velocity of ball before impact, in m/s
\(s_2\)=velocity of ball after impact, in m/s
\(T\)=torque at axis of rotation, in Nms
\(t\)=dwell time, or duration of impact, in seconds
\(v\)=linear velocity of the mass center, in m/s
\(v_1\)=linear velocity, just before impact, of racquet mass center, in meters/second
\(v_2\)=linear velocity, just after impact, of racquet mass center, in meters/second