Formula: Elbow Crunch
Elbow Crunch (A.K.A Elbow Yank) is the excess of centripetal over centrifugal force due to impact, this excess pulling force acting at the elbow as what might be viewed as a muscle spasm. The same analysis as with Shoulder Crunch applies, except instead of using \(R\) = 0.01\(r\) + 0.61 meters, it’s the distance from the elbow to the balance point: 0.01\(r\) + 0.36 meters. Just multiply Shock by 2 ÷ (0.01 r + 0.36). Elbow Crunch turns out to be more severe than Shoulder Crunch due to the smaller distance to the mass center from the axis of rotation.
\(A_x\) | = | Impulse Reaction, the translational force acting at the axis of rotation due to impact, in Newtons. Note that when \(d\) = \(q\) (\(q\) is the distance from the axis of rotation to the center of percussion), the expression within the second set of parentheses becomes zero. |
\(a\) | = | linear acceleration of the mass center, in m/s² |
\(b\) | = | mass of the ball, in kg |
\(c\) | = | coefficient of restitution of the racquet/ball system |
\(d\) | = | distance from the axis of rotation to the impact point, in cm |
\(e\) | = | the distance from the axis of rotation to the tip |
\(F\) | = | force applied at mass center, in Newtons |
\(I\) | = | moment of inertia (swing weight) of racquet, in kgf/cm² |
\(I_5\) | = | moment of inertia (swing weight) of racquet at 5cm from the butt, in kgf/cm² |
\(I_7\) | = | moment of inertia (swing weight) of racquet at 7cm from the butt, in kgf/cm² |
\(I_{10}\) | = | moment of inertia (swing weight) of racquet at 10cm from the butt, in kgf/cm² |
\(I_a\) | = | moment of inertia (swing weight) of racquet at distance \(a\) from the butt, in kgf/cm² |
\(M\) | = | mass of the racquet, in kg |
\(m\) | = | mass in kg |
\(ω\) | = | angular velocity of racquet, in radians/s |
\(p\) | = | linear velocity of impact point, in m/s |
\(r\) | = | distance in cm from mass center (balance point) to axis used in the stroke |
\(s\) | = | ball velocity, in m/s (positive is away from player) |
\(s_1\) | = | velocity of ball before impact, in m/s |
\(s_2\) | = | velocity of ball after impact, in m/s |
\(T\) | = | torque at axis of rotation, in Nms |
\(t\) | = | dwell time, or duration of impact, in seconds |
\(v\) | = | linear velocity of the mass center, in m/s |
\(v_1\) | = | linear velocity, just before impact, of racquet mass center, in meters/second |
\(v_2\) | = | linear velocity, just after impact, of racquet mass center, in meters/second |